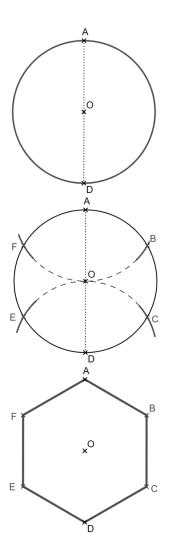
HEXAGONES EN FOLIE LIMURSGR



Etape 1 : fabrication d'un hexagone de 10 cm de côté

Tracer un cercle de centre O et de 10 cm de rayon. Placer un point A sur le cercle. Construire le diamètre [AD].

Tracer un cercle de centre A et de 10 cm de rayon. Tracer un cercle de centre D et de 10 cm de rayon. Ces deux cercles coupent le premier cercle ; placer les points B, C, E et F.

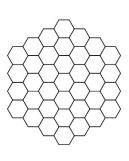
Tracer le polygone ABCDEF. Gommer tous les traits de construction en gardant juste le centre O.

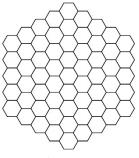
Etape 2 : construction du dessin intérieur

Construis le dessin intérieur en utilisant un de ceux proposés dans les pages suivantes. Tu peux aussi inventer une figure géométrique.

Etape 3 : coloriage et découpe

Gomme les noms des points et les traits de construction. Colorie la figure et découpe la figure avec précision.


Etape 4: assemblage en classe


Assemble ton hexagone avec ceux de tes camarades.

Nombre d'hexagones réalisés au total	7	19	37	61	91	127	169	217	271	331	397	469	547	631
Nombre d'hexagones par « côté »	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Hauteur de l'hexagone assemblé en m	0,2	0,5	0,9	1,2	1,6	1,9	2,3	2,9	3,3	3,6	3,9	4,3	4,7	5,0

7 hexagones

19 hexagones

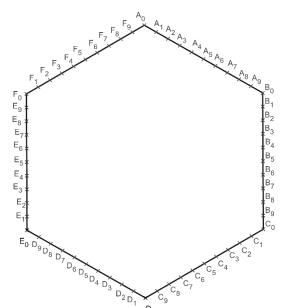
37 hexagones

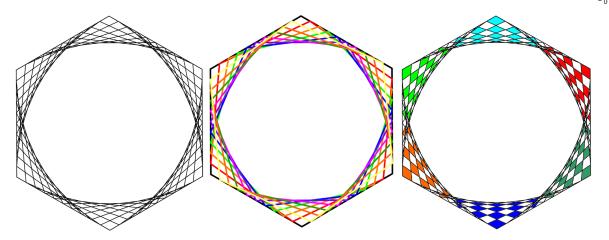
61 hexagones

7 hexagones

Renomme l'hexagone ABCDEF en A₀B₀C₀D₀E₀F₀.

Partage le segment $[A_0B_0]$ en 10 parties égales (gradue tous les cm) ; place les points A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 et A_9 .


Fais la même chose sur les 5 autres côtés du polygone.


Trace les segments $[A_1B_1]$, $[B_1C_1]$, $[C_1D_1]$, $[D_1E_1]$, $[E_1F_1]$ et $[F_1A_1]$. Trace les segments $[A_2B_2]$, $[B_2C_2]$, $[C_2D_2]$, $[D_2E_2]$, $[E_2F_2]$ et $[F_2A_2]$.

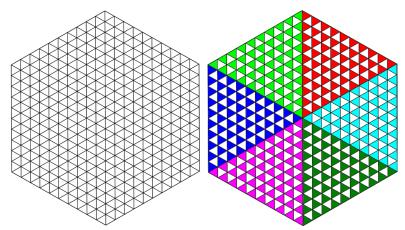
...

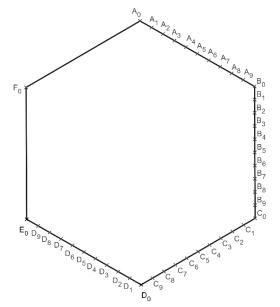
Trace les segments $[A_9B_9]$, $[B_9C_9]$, $[C_9D_9]$, $[D_9E_9]$, $[E_9F_9]$ et $[F_9A_9]$.

Tu peux tracer les segments de la même couleur ou changer de couleur.

Figure 2

Renomme l'hexagone ABCDEF en A₀B₀C₀D₀E₀F₀.

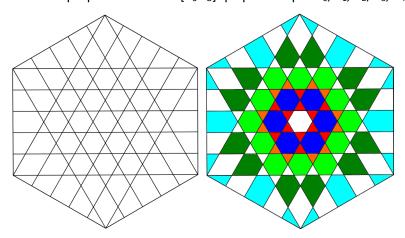

Partage le segment [A₀B₀] en 10 parties égales (gradue tous les cm) ; place les points A₁, A₂, A₃, A₄, A₅, A₆, A₇, A₈ et A₉.

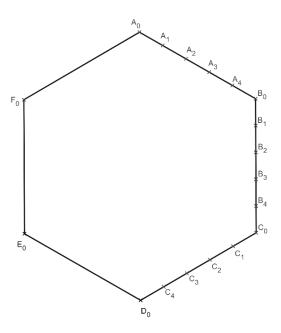

Partage le segment $[B_0C_0]$ en 10 parties égales (gradue tous les cm) ; place les points B_1 , B_2 , B_3 , B_4 , B_5 , B_6 , B_7 , B_8 et B_9 .

Partage le segment $[C_0D_0]$ en 10 parties égales (gradue tous les cm) ; place les points C_1 , C_2 , C_3 , C_4 , C_5 , C_6 , C_7 , C_8 et C_9 .

Partage le segment $[D_0E_0]$ en 10 parties égales (gradue tous les cm) ; place les points D_1 , D_2 , D_3 , D_4 , D_5 , D_6 , D_7 , D_8 et D_9 .

Trace la parallèle à (A_0F_0) sui passe par A_1 , A_2 , ..., A_9 , B_0 , B_1 , B_2 , ... B_9 . Trace la parallèle à (A_0B_0) sui passe par B_1 , B_2 , ..., B_9 , C_0 , C_1 , C_2 , ... C_9 . Trace la parallèle à (B_0C_0) sui passe par C_1 , C_2 , ..., C_9 , D_0 , D_1 , D_2 , ... D_9 .


Renomme l'hexagone ABCDEF en A₀B₀C₀D₀E₀F₀.


Partage le segment $[A_0B_0]$ en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .

Partage le segment $[B_0C_0]$ en 5 parties égales (gradue tous les 2 cm) ; place F_0 les points B_1 , B_2 , B_3 , B_4 .

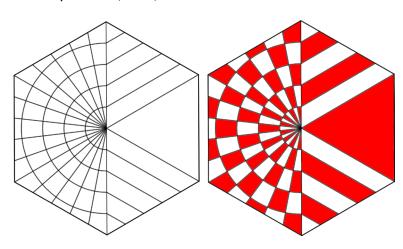
Partage le segment $[C_0D_0]$ en 5 parties égales (gradue tous les 2 cm) ; place les points C_1 , C_2 , C_3 et C_4 .

Trace les perpendiculaires à $[A_0B_0]$ qui passent par A_0 , A_1 , A_2 , A_3 , A_4 et B_0 . Trace les perpendiculaires à $[B_0C_0]$ qui passent par B_0 , B_1 , B_2 , B_3 , B_4 et C_0 . Trace les perpendiculaires à $[C_0D_0]$ qui passent par C_0 , C_1 , C_2 , C_3 , C_4 et D_0 .

Figure 4

Renomme l'hexagone ABCDEF en $A_0B_0C_0D_0E_0F_0$.

Partage le segment $[A_0B_0]$ en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .


Fais la même chose sur les 5 autres côtés du polygone.

Partage le segment $[A_0D_0]$ en 10 parties égales (gradue tous les 2 cm) ; place les points M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 , M_8 et M_9 .

Trace les segments $[A_1M_1]$, $[A_2M_2]$, $[A_3M_3]$, $[A_4M_4]$ et $[A_5M_5]$. Trace les segments $[C_0M_5]$, $[C_1M_6]$, $[C_2M_7]$, $[C_3M_8]$ et $[C_4M_9]$.

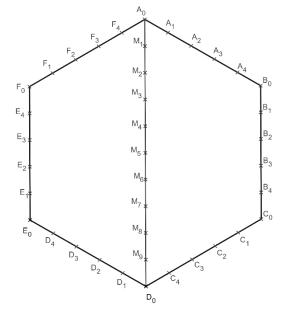
Trace les segments $[F_4M_5]$, $[F_3M_5]$, $[F_2M_5]$, $[F_1M_5]$, $[F_0M_5]$, $[E_4M_5]$, $[E_3M_5]$, $[E_2M_5]$, $[E_1M_5]$, $[E_0M_5]$, $[D_3M_5]$, $[D_3M_5]$, $[D_2M_5]$ et $[D_1M_5]$.

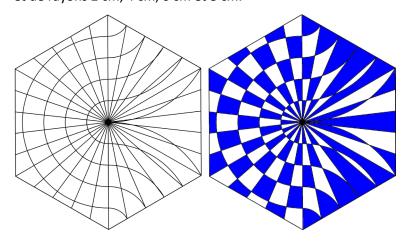
A l'intérieur du quadrilatère $A_0D_0E_0F_0$ trace des demi-cercles de cette M_5 et de rayons 2 cm, 4 cm, 6 cm et 8 cm.

Renomme l'hexagone ABCDEF en A₀B₀C₀D₀E₀F₀.

Partage le segment $[A_0B_0]$ en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .

Fais la même chose sur les 5 autres côtés du polygone.


Partage le segment $[A_0D_0]$ en 10 parties égales (gradue tous les 2 cm) ; place les points M_1 , M_2 , M_3 , M_4 , M_5 , M_6 , M_7 , M_8 et M_9 .


Trace les segments qui relient le point M_5 à tous les points marqués sur l'hexagone (A_0 , A_1 , A_2 , A_3 , A_4 , A_5 , B_0 , B_1 , B_2 , B_3 , ... F_2 , F_3 , et F_4).

A l'intérieur du quadrilatère $A_0D_0E_0F_0$ trace des demi-cercles de centre M_5 et de rayons 2 cm, 4 cm, 6 cm et 8 cm.

A l'intérieur du quadrilatère $A_0B_0C_0D_0$ trace des demi-cercles de centre A_0 et de rayons 2 cm, 4 cm, 6 cm et 8 cm.

A l'intérieur du quadrilatère $A_0B_0C_0D_0$ trace des demi-cercles de centre D_0 et de rayons 2 cm, 4 cm, 6 cm et 8 cm.

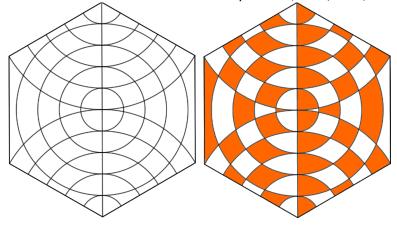


Figure 6

O étant le centre de l'hexagone, trace à l'intérieur de l'hexagone :

- les cercles de centre O et de rayon 2 cm, 4 cm, 6 cm et 8 cm
- les cercles de centre A et de rayon 2 cm, 4 cm, 6 cm, 8 cm et 10 cm
- les cercles de centre D et de rayon 2 cm, 4 cm, 6 cm, 8 cm et 10 cm

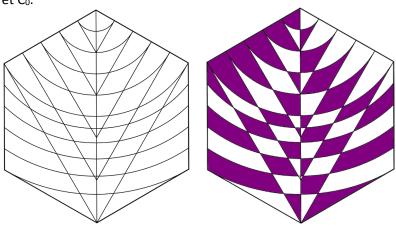
Flasher ce code pour trouver les consignes complètes avec d'autres exemples de figures.

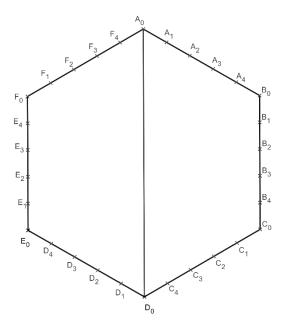
Bien penser à faire la figure sur une feuille de papier Canson.

Le lien est https://labomaths.net/wp-content/uploads/Hexagones-en-folie.pdf

Renomme l'hexagone ABCDEF en A₀B₀C₀D₀E₀F₀.

Partage le segment [A₀B₀] en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .


Fais la même chose sur les 5 autres côtés du polygone.


Trace le segment $[A_0D_0]$.

A l'intérieur du quadrilatère A₀D₀E₀F₀ trace les doutes perpendiculaires à $[A_0F_0]$ qui passent par F_0 , F_1 , F_2 , F_3 et F_4 .

A l'intérieur du quadrilatère A₀D₀C₀B₀ trace les doutes perpendiculaires à $[A_0F_0]$ qui passent par A_1 , A_2 , A_3 , A_4 et B_0 .

Trace, les cercles de centre A₀ qui passent par A₁, A₂, A₃, A₄, B₀, B₁, B₂, B₃, B₄ et Co.

Figure 8

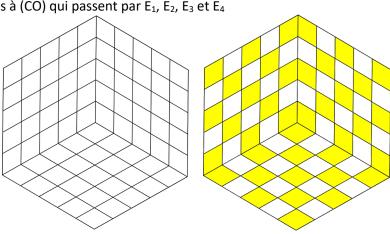
Tracer les segments [OA], [OC] et [OE].

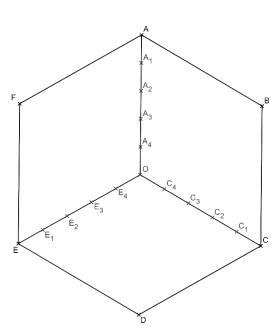
Partage le segment [AO] en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .

Partage le segment [CO] en 5 parties égales (gradue tous les 2 cm) ; place les points C_1 , C_2 , C_3 et C_4 .

Partage le segment [EO] en 5 parties égales (gradue tous les 2 cm) ; place les points E₁, E₂, E_{3 et} E₄.

Dans le losange ABCO, trace :


- les droites parallèles à (AB) qui passent par A₁, A₂, A₃ et A₄
- les droites parallèles à (AO) qui passent par C₁, C₂, C₃ et C₄


Dans le losange AOEF, trace :

- les droites parallèles à (AF) qui passent par A₁, A₂, A₃ et A₄
- les droites parallèles à (AO) qui passent par E1, E2, E3 et E4

Dans le losange CDEO, trace :

- les droites parallèles à (CD) qui passent par C1, C2, C3 et C4
- les droites parallèles à (CO) qui passent par E₁, E₂, E₃ et E₄

Trace les segments [AD], [CF] et [BE].

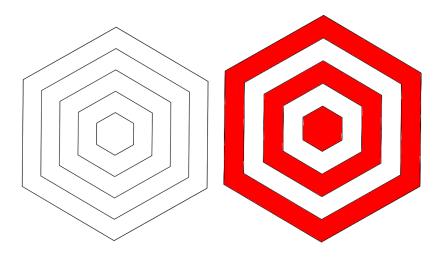
Partage le segment [AO] en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .

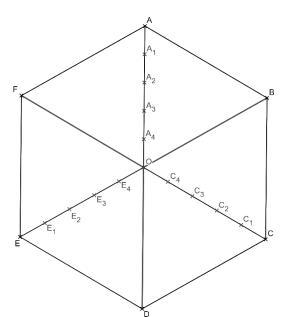
Partage le segment [CO] en 5 parties égales (gradue tous les 2 cm) ; place les points C_1 , C_2 , C_3 et C_4 .

Partage le segment [EO] en 5 parties égales (gradue tous les 2 cm) ; place les points E_1 , E_2 , E_3 et E_4 .

Dans le triangle ABO, trace les droites parallèles à (AB) qui passent par A_1 , A_2 , A_3 et A_4 .

Dans le triangle BCO, trace les droites parallèles à (BC) qui passent par C_1 , C_2 , C_3 et C_4 .


Dans le triangle CDO, trace les droites parallèles à (CD) qui passent par C_1 , C_2 , C_3 et C_4 .


Dans le triangle DEO, trace les droites parallèles à (DE) qui passent par E_1 , E_2 , E_3 et E_4 .

Dans le triangle EFO, trace les droites parallèles à (EF) qui passent par E_1 , E_2 , E_3 et E_4 .

Dans le triangle AFO, trace les droites parallèles à (AF) qui passent par A₁, A₂, A₃ et A₄.

Gomme les segments [AD], [CF] et [BE].

Trace les segments [AD], [CF] et [BE].

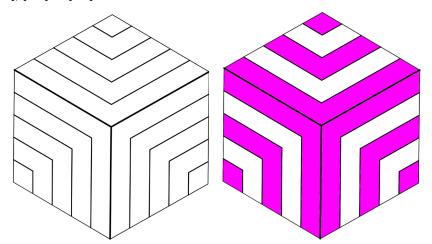
Partage le segment [AO] en 5 parties égales (gradue tous les 2 cm) ; place les points A_1 , A_2 , A_3 et A_4 .

Partage le segment [CO] en 5 parties égales (gradue tous les 2 cm) ; place les points C_1 , C_2 , C_3 et C_4 .

Partage le segment [EO] en 5 parties égales (gradue tous les 2 cm) ; place les points E_1 , E_2 , E_3 et E_4 .

Dans le triangle ABO, trace les droites parallèles à (BO) qui passent par A_1 , A_2 , A_3 et A_4 .

Dans le triangle BCO, trace les droites parallèles à (B0) qui passent par C_1 , C_2 , C_3 et C_4 .

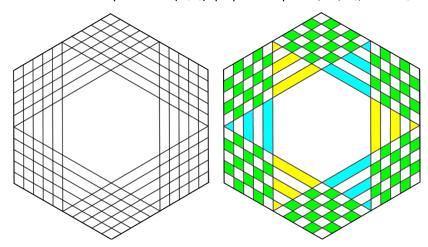

Dans le triangle CDO, trace les droites parallèles à (DO) qui passent par C_1 , C_2 , C_3 et C_4 .

Dans le triangle DEO, trace les droites parallèles à (DO) qui passent par E_1 , E_2 , E_3 et E_4 .

Dans le triangle EFO, trace les droites parallèles à (FO) qui passent par E_1 , E_2 , E_3 et E_4 .

Dans le triangle AFO, trace les droites parallèles à (FO) qui passent par A₁, A₂, A₃ et A₄.

Gomme les segments [AO], [CO] et [EO].



Renomme l'hexagone ABCDEF en $A_0B_0C_0D_0E_0F_0$. Partage le segment $[A_0B_0]$ en 10 parties égales (gradue tous les cm) ; place les points A_1 , A_2 , A_3 , A_4 , A_5 , A_6 , A_7 , A_8 et A_9 .

Fais la même chose sur les 5 autres côtés du polygone.

Trace les droites parallèles (A_0B_0) qui passent par B_1 , B_2 , B_3 , B_4 et B_5 . Trace les droites parallèles (B_0C_0) qui passent par C_1 , C_2 , C_3 , C_4 et C_5 . Trace les droites parallèles (C_0D_0) qui passent par D_1 , D_2 , D_3 , D_4 et D_5 . Trace les droites parallèles (D_0E_0) qui passent par E_1 , E_2 , E_3 , E_4 et E_5 . Trace les droites parallèles (E_0F_0) qui passent par E_1 , E_2 , E_3 , E_4 et E_5 . Trace les droites parallèles (A_0F_0) qui passent par E_1 , E_2 , E_3 , E_4 et E_5 .

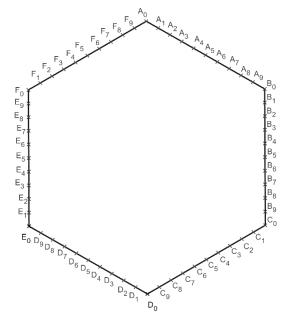
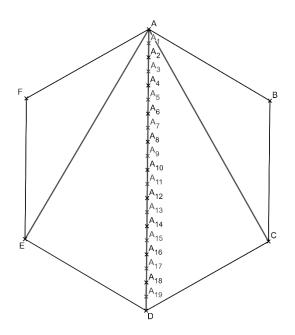
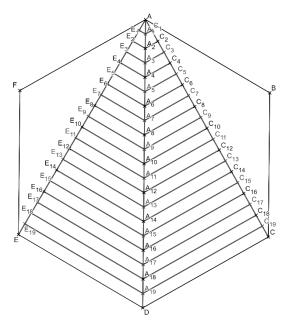
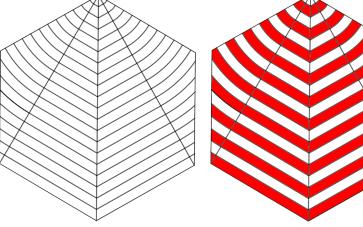




Figure 12

Trace les segments [AC], [AD], et [AE].

Partage le segment [AD] en 20 parties égales (gradue tous les cm); place les points A₁, A₂, A₃, A₄, A₅, ... et A₁₉.



Dans le triangle ADE, trace les droites parallèles à (DE) qui passent par les points A_1 , A_2 , A_3 , A_4 , A_5 , ... et A_{19} . On obtient les points E_1 , E_2 , E_3 , E_4 , E_5 , ... et E_{19} .

Dans le triangle ACD, trace les droites parallèles à (CD) qui passent par les points A_1 , A_2 , A_3 , A_4 , A_5 , ... et A_{19} . On obtient les points C_1 , C_2 , C_3 , C_4 , C_5 , ... et C_{19} .

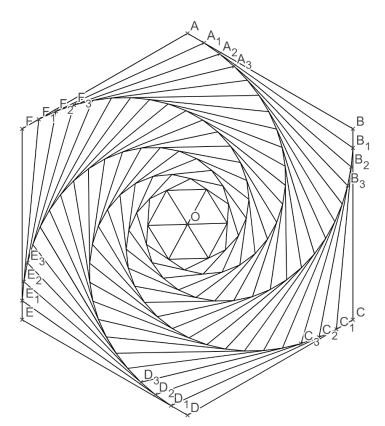
Dans le triangle AEF, trace les cercles de centre E_1 , E_2 , E_3 , E_4 , E_5 , ... et E_{19} .

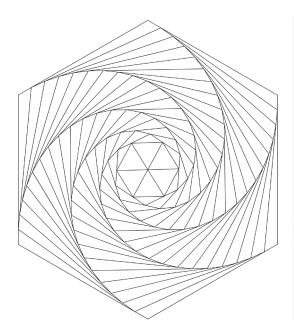
Dans le triangle ABC, trace les cercles de centre C_1 , C_2 , C_3 , C_4 , C_5 , ... et C_{19} .

☐ Place le point A_1 sur [AB] tel que $AA_1 = 1$ cm; place le point B_1 sur [BC] tel que $BB_1 = 1$ cm; place le point C_1 sur [CD] tel que $CC_1 = 1$ cm; place le point D_1 sur [DE] tel que $DD_1 = 1$ cm; place le point E_1 sur [EF] tel que $EE_1 = 1$ cm; place le point F_1 sur [AF] tel que $FF_1 = 1$ cm.

 \square Trace l'hexagone $A_1B_1C_1D_1E_1F_1$.

□ Place le point A_2 sur $[A_1B_1]$ tel que $A_1A_2 = 1$ cm; place le point B_2 sur $[B_1C_1]$ tel que $B_1B_2 = 1$ cm; place le point C_2 sur $[C_1D_1]$ tel que $C_1C_2 = 1$ cm; place le point D_2 sur $[D_1E_1]$ tel que $D_1D_2 = 1$ cm; place le point E_2 sur $[E_1F_1]$ tel que $E_1E_2 = 1$ cm; place le point E_2 sur $[A_1F_1]$ tel que $E_1F_2 = 1$ cm.


 \Box Trace l'hexagone $A_2B_2C_2D_2E_2F_2$.


□ Place le point A_3 sur $[A_2B_2]$ tel que $A_2A_3 = 1$ cm; place le point B_3 sur $[B_2C_2]$ tel que $B_2B_3 = 1$ cm; place le point C_3 sur $[C_2D_2]$ tel que $C_2C_3 = 1$ cm; place le point D_3 sur $[D_2E_2]$ tel que $D_2D_3 = 1$ cm; place le point E_3 sur $[E_2F_2]$ tel que $E_2E_3 = 1$ cm; place le point E_3 sur $[A_2F_2]$ tel que $E_2F_3 = 1$ cm.

☐ Trace l'hexagone A₃B₃C₃D₃E₃F₃.

...

☐ Termine en relayant les sommets du dernier hexagone au point O.

D'après un travail de Guillaume Besnard